Rabus.ru software service // © Rabusov Online Service. since 2004 // Рабусов С.В.

Джеймс Гордон

"Конструкции, или почему вещи не ломаются"

Часть четвертая

И ПОСЛЕДСТВИЯ БЫЛИ...

Глава 13.

ФИЛОСОФИЯ КОНСТРУИРОВАНИЯ,
или
форма, вес и стоимость

Философия есть не что иное, как благоразумие.

Джон Селден

Мы уже видели, что расчеты на прочность применяются для анализа поведения конкретных конструкций - либо тех, которые предполагается строить, либо тех, которые уже существуют, но их надежность находится под сомнением, либо тех, которые нас озадачили (успев сломаться). Другими словами, если мы знаем размеры конструкции и свойства материала, из которого она сделана, то можем по меньшей мере попытаться предсказать, сколь прочной она будет и как она будет деформироваться под нагрузкой.

Такие расчеты весьма полезны в конкретных задачах. Но они вряд ли помогут, если мы захотим понять, почему тот или иной предмет имеет именно присущую ему форму и сделан именно так, а не иначе, или если нам понадобится выбрать из широкого класса возможных конструкций наиболее подходящую для нашего случая. Например, если мы проектируем самолет или мост, то что лучше сослужит, оболочка ли из сплошных пластин или панелей или же конструкция типа решетки из стержней или труб, связанных, скажем, тросами? Почему у нас так много мышц и сухожилий и относительно мало костей? Как выбрать из огромного количества конструкционных материалов именно тот, который нужен? Делать ли конструкцию из стали или из алюминия, пластмассы или дерева?

Привычные для нас "конструкции" растений, животных и типичных творений наших рук приняли свой нынешний вид не сразу. Как правило, форма и материал любой живой конструкции, прошедшей длительный путь развития в условиях борьбы за существование, приобрели свой вид в результате оптимизации по отношению к нагрузкам, которым они обычно подвергаются, с одной стороны, и к энергетическим затратам, связанным с обменом веществ, - с другой. В технике хотелось бы достичь такой же оптимизации, но это удается нам далеко не всегда. И далеко не все понимают, что этот предмет, который иногда называют "философией конструирования", можно исследовать научными методами. Об этом остается только сожалеть, ибо полученные здесь результаты представляются важными как для биологии, так и для инженерного дела.

Хотя философия конструирования - предмет, не очень почитаемый, он уже имеет довольно длинную историю. Впервые серьезные исследования этой проблемы с инженерной точки зрения были предприняты около 1900 г. А. Мичеллом *.

* Michell A. The limits of economy of material in frame structures - Phyl. Mag., 6, 8 (1904), 589.

Хотя биологи и публиковали отдельные работы, связанные с законом двух третей, сформулированным еще Галилеем (см. гл.  8), первой значительной работой на эту тему была вышедшая в 1917 г. прекрасная книга Арки Томпсона "Рост и форма", в которой он с общих позиций рассмотрел влияние конструкционных требований на форму животных и растений. Несмотря на бесспорные достоинства, эта книга не во всем безупречна с инженерной точки зрения. Получив справедливо высокую оценку, "Рост и форма" не оказала тем не менее реального влияния на биологическую мысль ни в свое время, ни значительно позже. Кажется, она не произвела должного впечатления и на инженеров. Просто тогда еще не настало время для плодотворного обмена идеями между инженерами и биологами.

В наши дни основной вклад в математическое исследование философии конструирования внес X.Л. Кокс. Будучи большим специалистом по теории упругости, Кокс обладает и еще одним достоинством - он большой знаток произведений Беатрис Поттер *. Надеюсь, он простит меня, если я скажу, что в некоторых отношениях он несколько напоминает великого Томаса Юнга: подобно последнему, демонстрирует не только ярко выраженную одаренность, но и значительную неясность изложения. Боюсь, что не всякий смертный разберется в его идеях без "переводчика", а потому работы Кокса получили меньшее признание, чем они заслуживают. Многое из того, о чем я буду говорить дальше, прямо или косвенно основано на идеях Кокса. Начнем с его анализа конструкций, подвергающихся растяжению.

* Беатрис Поттер (1866-1943) - известная английская детская писательница. - Прим. перев.

Проектирование конструкций, работающих на растяжение
 

Любопытно, что к конструированию даже простейшей детали, работающей на одноосное растяжение, нельзя приступать до изобретения какой-либо законцовки, предназначенной для передачи нагрузки. Будь это стальной прут или лиана, канат или струна, напряженное состояние в концевой области гораздо сложнее одноосного растяжения. Здесь широкое поле деятельности для теории, по и эмпирика будет весьма кстати.
 
X.Л. Кокс. "Проектирование конструкций минимального веса"

Принципы проектирования конструкций, работающих на растяжение, были бы крайне просты, если бы все дело не портили законцовки - детали, передающие нагрузку на обоих концах растягиваемого элемента. Во-первых, вес такой конструкции, рассчитанный на заданную нагрузку, был бы пропорционален ее длине. Скажем, канат, длиной 100 м, рассчитанный на то, чтобы держать груз весом в 1 т, будет весить в 100 раз больше, чем канат длиной 1 м, выдерживающий такую же нагрузку в 1 т. Более того, если нагрузка распределена поровну, то безразлично, будет ли она удерживаться одним тросом или стержнем или двумя, каждый из которых имеет вдвое меньшее поперечное сечение.

Столь простой анализ нарушается необходимостью иметь детали, передающие нагрузку на обоих концах троса или стержня. Даже простая веревка должна иметь по узлу или петле на каждом конце. Узел или место сращения могут быть довольно тяжелыми и дорогостоящими. При точном расчете вес и стоимость узлов и стыков следует прибавить к весу и стоимости самой растягиваемой детали. Вес и стоимость законцовок будут одинаковыми как для длинных, так и для коротких канатов. Поэтому при прочих равных условиях вес и стоимость работающих на растяжение элементов конструкции на единицу длины с увеличением длины будет уменьшаться. Таким образом, вес не растет пропорционально длине элемента. Можно показать также, что общий вес законцовок двух растянутых стержней, работающих параллельно, меньше, чем общий вес законцовок одного стержня, рассчитанного на ту же нагрузку *. Следовательно, можно сэкономить общий вес, распределив нагрузку между двумя, тремя и более растягиваемыми деталями, тросами или канатами.

* Поперечное сечение растягиваемой конструкции пропорционально нагрузке, в то время как объем законцовок с ростом нагрузки растет по степенному закону с показателем 3/2.

Кокс подчеркивает, что распределение напряжений в законцовках обычно весьма сложно, в них обязательно появляются зоны концентрации напряжений, в которых при соответствующих условиях распространяются трещины. Поэтому вес и стоимость таких деталей определяются как искусством конструктора, так и трещиностойкостью материала. Чем больше величина работы разрушения материала, тем легче и дешевле будут законцовки. Однако, как мы видели в гл. 4, с ростом прочности трещиностойкость материала обычно падает. Для распространенных конструкционных материалов, таких, как сталь, работа разрушения катастрофически падает при увеличении прочности на растяжение.

Тем самым при выборе материала для конструкционного элемента, работающего на растяжение, мы находимся перед лицом двух противоречивых требований. Чтобы уменьшить вес средней части конструкции, нужно использовать материал с большой прочностью на растяжение. Для законцовок же обычно требуется более вязкий материал, весьма вероятно, что он будет иметь невысокую прочность на растяжение. Как это нередко бывает, здесь следует идти на компромисс. В данном случае выбор материала в основном определяется длиной детали. Для очень длинных деталей, например канатов современных подвесных мостов, следует выбрать высокопрочную сталь, даже если при этом придется мириться с дополнительным весом и сложностями, связанными с закреплением концов каната. Все-таки их всего лишь два - на одном и другом берегу, зато между ними может быть целая миля троса. Поэтому экономия веса на средней части конструкции более чем компенсирует любые потери на ее концах.

Ситуация полностью меняется, если мы будем иметь дело с такими деталями, как цепи с короткими звеньями. В каждом звене вес стыка может быть даже больше веса средней части. Возьмем, например, поддерживающие цепи в старых подвесных мостах. Обычно они делались из вязкого и пластичного кованого железа с небольшой прочностью на растяжение. Как мы уже говорили в гл. 9, именно по этой вполне убедительной причине растягивающие напряжения в плоских звеньях цепей моста через Менай составляют всего десятую часть напряжений в тросах современных подвесных мостов. Примерно то же справедливо и в отношении оболочечных конструкций, таких, как корпуса судов, резервуары и котлы, изготовленные из относительно небольших листов железа, или стали. Те же аргументы применимы и к таким клепаным алюминиевым конструкциям, как современный самолет. Все они могут рассматриваться в большей или меньшей степени как двумерные цепи с достаточно короткими звеньями. В таких случаях целесообразно использовать менее прочный, но более пластичный материал, иначе вес соединений был бы недопустимо велик (см. гл. 4, рис. 25).

Увеличение числа канатов и тросов в конструкциях судов, бипланов (а также палаток) приводит обычно к экономии веса *. Но за это приходится платить повышением лобового сопротивления, общим усложнением конструкции и высокой стоимостью ее эксплуатации. Похожий принцип можно встретить и в животном мире, где природа не скупилась на детали, например мышцы и сухожилия, работающие на растяжение. Для уменьшения веса законцовок она использовала тот же принцип, что и моряки елизаветинских времен. Концы многих сухожилий разветвляются в некоторую веерообразную конструкцию, которую Френсис Дрейк назвал бы "птичьей лапой". Каждая веточка сухожилия имеет отдельное крепление к кости. Так минимизируется вес (и, возможно, метаболическая стоимость).

* Вес конструкции, состоящей из п параллельных элементов и имеющей общую длину L, которая должна выдерживать заданную растягивающую нагрузку Р, выражается следующим образом:

где Z - полный вес всех п элементов на единицу длины; s - допустимое напряжение; k - коэффициент, связанный с изобретательностью конструктора; W - работа разрушения материала; рr - плотность материала.Вывод этой формулы можно найти в книге Кокса (Сох Н. L. The Design of Structures of Least Weight.- 1965), я лишь слегка ее модифицировал.

Сравнения веса сжатых и растянутых конструкций

Мы уже говорили в предыдущей главе, что для ряда материалов величины прочности на сжатие и растяжение часто сильно различаются, но для многих весьма распространенных материалов, таких, как сталь, это различие не очень велико, так что массы коротких растянутых и сжатых элементов должны быть более или менее одинаковыми. На самом деле сжатый короткий стержень может быть даже легче растянутого, так как для него иногда не нужны законцовки, совершенно необходимые в случае растяжения.

Однако с увеличением длины такого стержня дает себя знать эйлерова потеря устойчивости. Напомним, что критическая нагрузка, при которой сжатый стержень длиной L начинает выпучиваться, изменяется пропорционально 1/L2. Это означает, что для стержня с заданным поперечным сечением предельное напряжение при сжатии с увеличением L убывает очень быстро. Чтобы выдержать заданную нагрузку, длинный стержень должен быть гораздо толще и, следовательно, тяжелее короткого. Как мы установили в предыдущем параграфе, в случае растяжения все происходит как раз наоборот.

Очень поучительно сравнить, как конструкционный элемент длиной 10 м выдерживает нагрузку весом 1 т (104 Н) в условиях растяжения и сжатия.

Растяжение. Для стального троса допустимое напряжение примем равным 350 МН/м2 (35 кгс/мм2). Принимая во внимание крепления на его концах, найдем общий вес конструкции равным примерно 3,5 кг.

Сжатие. Попытаться удержать нагрузку в 1 т (104 Н) с помощью одного сплошного стального стержня длиной 10 м было бы просто глупо: чтобы избежать потери устойчивости, его пришлось бы сделать очень толстым и, следовательно, очень тяжелым. На практике можно, например, использовать стальную трубу диаметром около 16 см с толщиной стенок около 5 мм. Такая труба будет весить около 200 кг. Другими словами, ее вес будет в 50-60 раз больше, чем у стального стержня, работающего в тех же условиях на растяжение. Стоимость конструкции увеличится примерно в той же пропорции. Далее, если мы захотим распределить нагрузку между несколькими деталями, то ситуация не только не станет лучше, а значительно ухудшится. Если мы попробуем держать нагрузку в 1 т не с помощью одной колонны, а, скажем, с помощью похожей на стол конструкции на четырех стержнях 10-метровой высоты, то общий их вес удвоится и достигнет 400 кг. Чем на большее число элементов мы распределим данную нагрузку, тем больше будет вес всей конструкции: он растет как n1/2, где n - число элементов (см. приложение 4).

С другой стороны, если мы будем увеличивать нагрузку при фиксированной длине, то ситуация в случае сжатой конструкции будет выглядеть получше. Например, если увеличить нагрузку в сто раз, с 1 т до 100 т, то, если вес растянутой конструкции увеличится соответственно с 3,5 до 350 кг, вес одной колонны высотой в 10 м увеличится только десятикратно, с 200 до 2000 кг. Поэтому в случае сжатия гораздо экономичнее поддерживать большую нагрузку, чем малую (рис. 152). Все эти рассуждения справедливы также и для панелей,  пластин и оболочек (см. приложение 4).

Рис. 152. Зависимость относительного веса (и стоимости) детали,
которая должна передать заданную нагрузку, от ее длины.

Приведенный анализ подтверждает рациональность  таких конструкций, как палатки и парусные суда. В них сжимающие нагрузки действуют концентрированно на небольшое количество по возможности коротких мачт или шестов. В то же время растягивающие нагрузки, как мы уже говорили, лучше распределить среди большого количества канатов и тросов. Поэтому шатер, имеющий единственный шест и множество растяжек, является самым легким "зданием", которое только можно построить при заданном объеме. Любая палатка будет легче и дешевле капитального здания из дерева или камня. Точно так же катер или шлюп с единственной мачтой имеет более легкую и эффективную оснастку, чем шхуна, кеч или любой более сложный корабль с большим количеством мачт. Именно поэтому были тяжелы и неэффективны А-образные или треугольные мачты древних египтян и конструкторов викторианских броненосцев (см. гл. 10).

Конструкция человеческого тела имеет много общего с конструкцией шатра и парусного корабля. Небольшое количество сжатых деталей, то есть костей, расположенных примерно в центре конструкции, окружено множеством мышц, сухожилий и связок, работающих на растяжение, причем эта система гораздо сложнее системы парусов и канатов полностью оснащенного корабля. Кстати, с конструкционной точки зрения две ноги лучше, чем четыре, а сороконожка может существовать только потому, что ноги у нее весьма коротки.

Масштабные эффекты, или еще раз о законе двух третей

Напомним, что уже столетия назад Галилею пришла мысль о том, что, поскольку вес конструкции растет, как куб ее размеров, а поперечное сечение несущих деталей увеличивается пропорционально квадрату размеров, то напряжения в материале геометрически подобных конструкций должны расти пропорционально их размерам. Если разрушение конструкции происходит из-за растягивающих напряжений, прямо или косвенно определяемых ее собственным весом, то это означает, что с увеличением размеров относительная толщина и вес несущих деталей должны расти не пропорционально размерам и весу всей конструкции, а гораздо быстрее. Поэтому размеры таких конструкций не могут превышать некоторого предела.

Закон двух третей долгое время был общепринятым как среди биологов, так и среди инженеров. Герберт Спенсер и позднее Арки Томпсон утверждали, что этот закон ограничивает размеры животных, а инженеры в свою очередь прибегали к нему, чтобы показать, почему неразумно строить корабли и самолеты значительно больших размеров, чем уже существующие. Однако, несмотря на это, размеры кораблей и самолетов продолжали увеличиваться.

В действительности закон двух третей в полной мере применим, по-видимому, лишь к оконным и дверным перемычкам греческих храмов (они делались из непрочного тяжелого камня), к айсбергам и плавучим льдинам (они состоят из непрочного тяжелого льда), а также ко всякого рода предметам типа желе или бланманже.
Мы уже видели, что во многих сложных конструкциях вес сжатых элементов во много раз превышает вес элементов, подвергающихся растяжению. Поскольку сжатые элементы обычно выходят из строя вследствие потери устойчивости, с увеличением нагрузки их эффективность возрастает, иными словами, их эффективность растет с увеличением размеров сооружения. Поэтому, хотя вес силовой конструкции и увеличивается быстрее ее размеров, но происходит это все же значительно медленнее, чем предписывает закон двух третей. На практике этот рост может быть вполне оправдан тем полезным эффектом, который дает увеличение размеров. Например, для кораблей или рыб, самолетов или птиц сопротивление движению примерно пропорционально площади их поверхности, и отношение этой площади к весу будет падать с увеличением размеров. Именно этим руководствовался Брюнель при проектировании корабля "Грейт Истерн". Хотя его огромный корабль и оказался неудачным *, подход был правильным, именно поэтому мы строим теперь такие гигантские корабли, как современные супертанкеры. Размеры же больших животных, как мы видели в гл. 4, скорее связаны с "критической длиной трещин Гриффитса" в их костях, а не с законом двух третей.

* Неудачным "Грейт Истерн" оказался не с технической, а с коммерческой точки зрения. Дело в том, что он проектировался для рейсов между Англией и Австралией, а использовать его решили для гораздо более коротких трансатлантических рейсов. "Грейт Истерн" завоевал Голубую ленту, оказался незаменим при прокладке подводных телеграфных кабелей между Европой и Америкой. Вплоть до постройки "Лузитании" он был самым крупным судном в мире (подробнее см., например, в книге С.И. Белкина "Голубая лента Атлантики"). - V.V.

Каркасные конструкции против монокока

Очень часто инженер стоит перед проблемой выбора между решетчатой каркасной конструкцией, сделанной, как в детском конструкторе, из отдельных стержней и брусьев (ее называют пространственной фермой), и оболочечной конструкцией, в которой нагрузки воспринимаются более или менее непрерывными панелями (такой тип конструкции называют монококом). Иногда различие между двумя этими формами конструкций смазывается, это происходит в тех случаях, когда каркасная система покрывается какой-нибудь обшивкой, которая на самом деле воспринимает лишь незначительную долю нагрузки. Примером того могут служить обычные обшитые деревом домики, современные каркасные ангары и склады, покрытые гофрированным железом, и, наконец, животные, покрытые чешуей или панцирем.

Иногда выбор между двумя этими типами конструкций бывает продиктован не только конструкционными соображениями. Так, опоры для линий электропередач делают только решетчатого типа, поскольку они испытывают меньшее давление ветра и имеют меньшую площадь окраски, а водяные цистерны предпочитают делать в виде оболочки из более толстых стальных листов, а не в виде решетчатой силовой конструкции, поддерживающей водонепроницаемую оболочку из более тонкого материала, хотя такая форма может иметь меньший вес и используется природой в '"конструкции" желудка и мочевого пузыря.

В одних случаях различие в весе и стоимости двух возможных типов конструкций незначительно, и поэтому безразлично, какую из них использовать. В других - разница очень велика. Как мы уже видели, палатка или шатер всегда значительно легче и дешевле, чем любое здание такого же объема, сделанное из бетона или кирпича. Кузов автобуса "Вейман" (модель 1930 г.) имел деревянный каркас, обтянутый тканью, и был гораздо легче любого из штампованных металлических кузовов оболочечной конструкции, вошедших в употребление позже. При нынешних ценах на бензин подобный кузов вполне может обрести вторую жизнь.

Существует, однако, мнение, будто оболочечные конструкции типа монокока более современны и прогрессивны, чем якобы примитивные и устаревшие пространственные каркасные конструкции. Такого мнения придерживаются даже опытные инженеры, но в действительности для этого нет объективных оснований. В тех случаях, когда нагрузка носит в основном сжимающий характер, пространственные каркасные системы всегда легче и обычно дешевле монокока. Однако весовые издержки при использовании конструкций типа монокока не так уж велики, если большие нагрузки воспринимаются конструкцией относительно малых размеров. Это оправдывает в ряде случаев их применение. Но для больших слабо нагруженных конструкций, таких, как дирижабль с жестким корпусом, каркасная конструкция практически является единственно возможной. Реальный воздухоплавательный аппарат будет не огромным монококовым дирижаблем, сделанным из блестящих листов алюминия, которыми бредят инженеры, а наполненным газом баллоном.

Переход от палочек, проволочек и ткани в конструкциях первых самолетов к современным монококам был продиктован не внезапной сменой моды. Это был необходимый и совершенно логичный шаг, связанный с резко возросшими скоростями и нагрузками. Как мы уже говорили, в условиях сжимающих и изгибающих нагрузок монокок всегда окажется тяжелее каркасной конструкции, хотя при увеличении нагрузок этот избыточный вес и уменьшается. С другой стороны, в условиях нагрузок, приводящих к сдвигу и создающих крутящий момент, монокок оказывается предпочтительнее каркасной конструкции *.

* Для данной площади поперечного сечения элемента.

С ростом скоростей самолетов росли и требования к прочности и жесткости на кручение. Наконец наступил момент (это было в 30-е годы), когда из-за требований к весу конструкций пришлось окончательно перейти от каркасной системы к монококу, в первую очередь при конструировании монопланов. Поэтому современные самолеты обычно делают в виде сплошной оболочечной конструкции из листов алюминия, фанеры или стеклопластика. Возврат к пространственной каркасной системе, который мы наблюдаем в конструкциях современных планеров, действительно чрезвычайно легких, столь же логичен. Большие крутящие нагрузки встречаются лишь в созданных человеком конструкциях, таких, как корабли или самолеты. Мы уже говорили в гл. II, что природе почти всегда удается избежать кручений, и поэтому монокок или внешний скелет встречаются не часто, во всяком случае у крупных животных. Большинство из них позвоночные, и они представляют собой весьма сложную и эффективную пространственную ферму, конструкционно весьма мало отличающуюся от бипланов и парусных кораблей. Очень показательны с этой точки зрения конструкции птиц, летучих мышей и птеродактилей. Они устроены таким образом, что их легкие каркасные конструкции не требуют большой крутильной жесткости, поэтому они не разрушаются в полете. Это полезно иметь в виду авиаконструкторам.

Надувные конструкции

Иногда интересно поразмышлять над некоторыми "если бы" и "но" в истории техники. Если бы Исамбард Кингдом Брюнель возник на "железнодорожном" небосклоне всего несколькими годами раньше, то весьма вероятно, что большинство железных дорог в мире имело бы колею шириной в 2150 вместо чаще всего используемой сейчас колеи в 1435 мм *. Такая ширина была введена его конкурентом Джорджем Стефенсоном как ширина "колеи угольной вагонетки", которая в свою очередь исходила от ширины колеи римских колесниц. Стефенсоновская колея имела некоторое начальное преимущество в возникшем соревновании - такую возможность предвидел и Брюнель. Но будь сегодня железнодорожная колея шире, железнодорожный транспорт, возможно, и в техническом, и в экономическом отношении занимал бы сейчас большее место в нашей жизни. Не исключено, что в этом случае картина мира была бы несколько иной.

* В Советском Союзе ширина железнодорожной колеи 1524 мм. - Прим. ред.

С другой стороны, если бы надувные шины появились к 1830 г., можно было бы тогда прямо перейти к безрельсовому транспорту, миновав стадию железных дорог. И в этом случае современный мир был бы совсем другим. На самом деле изобретение надувной шины опоздало на 15 лет. Она была запатентована в 1845 г. двадцатитрехлетним Р.В. Томсоном. Шина Томсона технически была удивительно удачной, однако к этому времени железные дороги уже вошли в жизнь. Интересы железнодорожных компаний, совпавшие с интересами владельцев гужевого транспорта, привели к абсурдному законодательству, которое через систему запретов отодвинуло развитие автомобильного транспорта до рубежа прошлого и нынешнего столетий.

Нельзя было и помыслить, что велосипед может составить какую-либо конкуренцию поездам или лошадям, поэтому его появление было официально признано и разрешено в викторианские времена. Надувная шина с успехом пережила свое возрождение в 1888 г. для использования в велосипеде. Дж.Б. Данлоп сделал на этом состояние, так как Томсон к этому времени уже умер и его патент потерял силу. Скорость грузовика со сплошными шинами была бы ограничена примерно 20 км/час, не намного быстрее двигался бы и легковой автомобиль. Изобретение Томсона не только сделало практически возможным быстрый и дешевый шоссейный транспорт, но и позволило самолетам подниматься с суши и садиться на нее. Без надувных шин мы были бы вынуждены пользоваться, вероятно, какими-то гидропланами.

Шины, смягчающие и выравнивающие ударные нагрузки, которые действуют на колеса экипажа, - это лишь один из видов силовых надувных конструкций. Разного рода силовые надувные конструкции позволяют избежать серьезных затрат материала и снизить стоимость в тех случаях, когда необходимо передавать небольшие изгибающие и вжимающие нагрузки на значительные расстояния. В таких конструкциях сжатию подвергаются не твердые панели или колонны, которые легко выпучиваются, а воздух или вода. Твердые же части конструкции подвергаются только растягивающим напряжениям, что, как мы уже могли убедиться, и легче, и дешевле.

Остроумная идея использования надувных конструкций в технике отнюдь не нова. Примерно за тысячелетие до нашей эры в верховьях Тигра и Евфрата делали лодки и плоты из надувных шкур. Они спускались вниз по течению, нагруженные товарами, на них, как правило, находились также мулы и ослы. По прибытии на место назначения воздух выпускался из шкур, и лодки возвращались обратно домой по суше на спинах этих вьючных животных. Сегодня надувные лодки получили широкое распространение, так же как и надувные палатки и мебель, в упакованном виде их просто перевозить.

Поддерживаемая воздухом крыша была предложена в 1910 г. крупным инженером Ф. Ланчестером. Она представляла собой надувную оболочку, края которой крепились к земле. Оболочка поднималась и держалась в воздухе благодаря очень небольшому избыточному давлению, создаваемому простым вентиляторным компрессором. Хотя входить и выходить приходилось через специальный воздушный шлюз, это не умаляло достоинств конструкции. Крыша Ланчестера позволяет просто и дешево создать перекрытие над большой площадью, однако в настоящее время ее применение ограничивается такими сооружениями, как оранжереи и крытые теннисные корты, применению в строительстве производственных и жилых зданий препятствуют давно устаревшие нормы.

Конечно, в надувных конструкциях не обязательно использовать только воздух. На том же принципе "работает" мешок с песком, так же как и баржи типа "Дракон", которые представляют собой просто большие удлиненные плавающие мешки, наполненные водой или нефтью. Они используются в верховьях Амазонки для транспортировки нефти, и после опорожнения возвращаются назад по суше (только не на ослах), как и древние надувные лодки на Евфрате. В таких мешках доставляется пресная вода в туристские отели, расположенные на островах Греции.

Техника надувных конструкций, вероятно, заслуживает более интенсивного развития, чем это было до сих пор. По-настоящему эксплуатируют принцип надувных конструкций лишь растения и животные, организм которых работает подобно химическому заводу и содержит много самых разных и сложных жидкостей. Нет ничего более естественного и экономичного, чем спроектировать червяка в форме длинного мешка, туго нафаршированного внутренностями. Конструкции такого типа так хорошо работают и представляются настолько естественными, что можно только удивляться, почему животным понадобилось обзавестись скелетом из хрупких и тяжелых костей. Не было ли бы куда как удобнее, если бы человек был устроен наподобие осьминога, каракатицы или хобота слона?

Существует мнение, как сообщил мне профессор Симкис, что в животном мире на самом деле никто и никогда не замышлял обзаводиться скелетом; вполне возможно, что самые ранние кости были просто свалкой ненужных организму мельчайших частиц металлов. Но коль скоро живой организм хоть однажды произвел внутри своего тела твердое неорганическое образование, он мог затем попытаться использовать его и для прикрепления мускулов.

Колеса со спицами
 

На свадьбе немодной этой
Не будет, увы, кареты, -
Но будешь прекрасна
На первоклассном
Двухместном велосипеде!

Гарри Дакр.
"Дэйзи Белл"

В обычном деревянном колесе телеги весь ее вес воспринимается спицами, поочередно работающими на  сжатие. В этом смысле телега очень похожа на сороконожку с огромным количеством длинных ног. Вместе взятые, они много весят, но работа их неэффективна. Впервые, кажется, этот факт стал ясен Джорджу Кэйли (1773-1857), замечательному и эксцентричному человеку. Кэйли был одним из самых блестящих зачинателей авиации, он задался вопросом, как сделать колеса шасси своего самолета более легкими. Уже в 1820 г. он понял, что можно сильно сэкономить на весе, если изобрести такое колесо, в котором спицы работают не на сжатие, а на растяжение. Эта мысль привела в конце концов к разработке современного велосипедного колеса, в котором проволочные спицы постоянно растянуты, в то время как сжимающая нагрузка воспринимается ободом, который можно сделать весьма тонким и легким, так как он оказывается весьма устойчивым.

Колесо с проволочными спицами и надувными шинами сделало велосипед чрезвычайно удобным и практичным. Однако экономия веса достигается только в случае больших и слабо нагруженных колес, таких, как колеса велосипеда. Когда колесо становится меньше, а нагрузка больше, натянутые спицы обычно почти не дают преимуществ. В современных спортивных автомобилях штампованные стальные колеса лишь чуть тяжелее колес со спицами, которые в данном случае не стоят связанных с ними хлопот и расходов.

О выборе лучшего материала, или что такое "лучший материал"

Можно предположить, что природа знала свое дело, когда выбирала между различными возможными вариантами биологических тканей, но простые смертные, а порой и даже великие, имеют очень странные представления о материалах. Согласно Гомеру, лук Аполлона был сделан из серебра * - металла, в котором можно запасти лишь ничтожное количество упругой энергии. В более поздние века поэты говорили, что полы на небесах сделаны из золота или из стекла; оба вещества - чрезвычайно неподходящий стройматериал для полов. Правда, поэты почти всегда безнадежны в отношении материалов, но и большинство из нас не многим лучше. В действительности очень редко кто-либо всерьез задумывается о подобных вещах.

* Neque semper агент tendit Apollo! - "Никому не позволено натягивать лук Аполлона!" - говорит Гораций в "Одах"; возможно, он знал, что ползучесть у серебра почти так же велика, как у свинца.

Выкрутасы моды и соображения престижа, кажется, играют здесь главную роль. Золото не очень подходит для часов, так же как и сталь для мебели оффисов. В викторианскую эпоху увлекались чугуном, из него делали даже такие предметы обихода, как подставки для зонтиков. Говорят, вождь одного африканского племени весь свой дворец построил из чугуна. Хотя выбор материала иногда является следствием эксцентричности, чаще он основан на традициях и консерватизме. Конечно, в основе традиционного выбора материала нередко лежат весьма веские причины, но во многих случаях он обусловлен случайными обстоятельствами, а порой обоснованность и случайность так тесно переплетены, что трудно понять, насколько он оправдан. Люди искусства, от Льюиса Кэррола до Сальватора Дали, открыли, что можно вызвать сильный психологический шок одной мыслью о том, что самые знакомые предметы могут быть сделаны из явно неподходящего материала, например резины или хлеба с маслом. Инженеры очень восприимчивы к таким эффектам; их бы сегодня также шокировала идея сделать большой деревянный корабль, как наших предков - идея сделать корабль из железа.

Очень любопытно проследить, как меняется со временем отношение к тем или иным материалам. Возьмем, например, соломенные крыши. Солома была самым дешевым и потому самым непрестижным кровельным материалом, однако в беднейших сельских районах ею часто приходилось покрывать даже крыши церквей. В течение XVII в., когда церковные приходы сделались побогаче, по подписке собирали деньги на замену соломы шифером или черепицей. Иногда денег на всю крышу не хватало, и тогда приходилось оставлять солому в тех местах, где она была меньше заметна для прохожих, - черепицей покрывалась только сторона, обращенная к главной дороге. Сегодня престижность обернулась другой стороной - соломенная крыша в английских графствах служит предметом гордости весьма богатых бизнесменов.

Материалы, топливо и энергия

В будущем XX в., возможно, назовут веком стали и бетона. Но не исключено, что о нем будут говорить и как о веке уродств или расточительства. Однако не только инженеры одержимы сталью и бетоном (и почти безразличны к последствиям этой одержимости), ими заразились и политики, и широкая публика.

Болезнь, по-видимому, началась лет двести назад со времен промышленной революции и появления дешевого угля; это привело к дешевому железу н железным паровым машинам, превращавшим дешевый уголь в дешевую механическую энергию и т. д., круг за кругом, раскручивалось колесо производства и потребления энергии. В угле и нефти в малом объеме запасено большое количество энергии. Машины очень быстро перерабатывают заметную часть этой энергии, но также в малом объеме. Затем они выдают эту энергию в концентрированной форме в виде электричества или механической работы. На этой концентрации энергии основывается вся наша современная техника. Материалы этой техники - сталь, алюминий и бетон - сами требуют больших количеств энергии для своего производства (табл. 6).

Таблица 6.
Количество энергии, необходимое для производства различных материалов *


 
Материал
Энергозатраты
для производства
1 т материала
Дж х 109/т 
Нефтяной
эквивалент
т 
Сталь (мягкая)
60
1,5
Титан
 800
20
Алюминий
250
6
Стекло
24
0,6
Кирпич
6
0,15
Бетон
4
0,1
Углеволокнистые композиты
4000
100
Дерево (сосна, ель)
1
0,025
Полилиэтилен
45
1,1
* Все эти величины весьма приблизительны и в чем-то спорны, но я думаю, что они достаточно близки к истине. Величины, относящиеся к углеволокнистым композитам, предположительны, однако основаны на многолетнем опыте разработки волокон такого типа.
Поскольку производство этих материалов весьма энергоемко, их можно эффективно использовать только в условиях высокой энерговооруженности экономики. Сооружая технические устройства, мы затрачиваем не только денежные средства, но и энергию, а потому необходимо обеспечить возврат того и другого.

Несмотря на высокую стоимость энергии и оскудение ее запасов, потребление энергии скорее увеличивается, чем уменьшается. Такие совершенные машины, как газовые турбины, все более и более лихорадочно производят все больше и больше энергии внутри все меньшего и меньшего объема. Совершенные устройства требуют совершенных материалов, и такие новые материалы, как высокотемпературные сплавы и пластики, армированные углеволокном, требуют для своего производства огромного количества энергии.

Весьма вероятно, что такое положение вещей не может продолжаться бесконечно, ибо вся эта система полностью зависит от дешевых и концентрированных источников энергии, таких, как нефть и уголь.

Живую природу можно считать совершенно уникальной системой, приспособленной для извлечения энергии не из концентрированных, а из "размазанных" источников, причем использует она эту энергию с величайшей экономией. Сейчас предпринимается много попыток собирать энергию для технических целей из таких неконцентрированных источников, как солнечный свет, ветер или океан. Многие из них, вероятно, окончатся неудачей, потому что энергетические затраты на постройку соответствующих систем из стали, бетона и других материалов могут оказаться слишком велики и даже не компенсируются при их эксплуатации. Очевидно, необходим совершенно другой подход ко всей проблеме "эффективности". Природа смотрит на эти проблемы с точки зрения "метаболических затрат", и, быть может, мы должны перенять ее опыт.

Дело не только в том, что для производства одной тонны металла или бетона требуется много энергии. Сами эти громоздкие, но слабо нагруженные конструкции, обычно необходимые для систем с малой плотностью перерабатываемой энергии, могут оказаться в несколько раз тяжелее, если их делать из стали и бетона,  а не из более подходящих требующих специальной разработки материалов.

Мы вскоре увидим, что одним из самых эффективных в конструкционном смысле материалов может быть дерево. При больших размерах и малых нагрузках конструкция из дерева во много раз легче, чем конструкция из бетона или стали. В прошлом затруднения с использованием древесины во многом определялись медленным ростом леса и необходимостью дорогостоящей выдержки древесины.

Возможно, самое важное достижение в области материалов за последнее время принадлежит генетикам, которые вывели быстрорастущие породы деревьев, дающих коммерческую древесину. Сейчас разводят разновидности сосны (Pinus radiata), ствол которой при благоприятных условиях дает прирост до 12 см в диаметре в год, так что лес готов для рубки на деловую древесину уже через 6 лет после посадки. Появились реальные перспективы превратить дерево в техническую культуру с коротким периодом созревания. Важно, что почти вся энергия, необходимая для выращивания древесины, поступает бесплатго, от Солнца. Кроме того, деревянную конструкцию можно сжечь за ненадобностью, получив большую часть энергии, накопленной деревом во время роста, чего, конечно, нельзя сказать ни о стали, ни о бетоне.

Древесина обычно требовала длительной и дорогостоящей выдержки в специальных сушилках, которые потребляют значительное количество энергии. Сегодня оказалось возможным сократить срок выдержки сортовой мягкой древесины до 24 ч при низкой стоимости процесса сушки. Это имеет очень важное значение не только для строительного дела, но и в связи с мировым энергетическим кризисом.

Анализ весовой эффективности различных материалов в различных конструкциях приведен в приложении 4. Проектирование большинства технически совершенных конструкций, таких, как, например, самолет, во многом определяется величиной E / r, которая называется удельным модулем Юнга и определяет, так сказать, весовую "стоимость" деформаций конструкции. Оказывается, однако, что для большинства обычных конструкционных материалов - молибдена, стали, титана, магния, алюминия и дерева - величина E / r приблизительно одинакова. Именно поэтому в течение последних 15-20 лет правительства разных стран затратили столь большие суммы на разработку новых материалов, основой которых служат такие экзотические волокна, как нити бора и карбида кремния, углеволокна.

Материалы этого типа могут быть более или менее эффективными в авиакосмической промышленности, но одно можно сказать с уверенностью - они не только дороги, но и требуют больших затрат энергии для своего производства. По этой причине они, вероятно, будут применяться только в специальных целях и, по моему мнению, не найдут широкого применения в обозримом будущем.

Требование высокой жесткости конструкции может очень ограничивать наши возможности. Однако, как мы уже видели, стоимость сжатой конструкции - весовая, а часто и денежная - во многих случаях тоже очень высока. Весовая стоимость * сжатой колонны определяется не отношением E / r, а величиной (E )1/2/ r. Весовая стоимость панели зависит от (E )1/3/ r (приложение 4). Эти параметры приведены в табл. 7.

* Здесь весовая стоимость понимается как плата весом силового элемента за данную критическую или разрушающую нагрузку. - Прим. ред.

Таблица 7
Критерии эффективности некоторых материалов в различных условиях


 
Материал
Модуль Юнга 
Е
Плотность
r
E / r
(E )1/2/ r
(E )1/3/ r
Сталь 
210000
7,8
25000
190
7,5
Титан
120000
4,5
25000
240
11
Алюминий
73000
2,8
25000
310
15
Магний
42000
1,7
24000
380
20,5
Стекло
73000
2,4
25000
360
17,5
Кирпич
21000
3,0
7000
150
9
Бетон
15000
2,5
6000
160
10
Углеволокнистые композиты
200000
2,0
100000
700
29
Дерево (сосна, ель)
14000
0,5
25000
500
48

Можно заметить, что малая плотность материала дает ему большие преимущества, и сталь в этом смыслу хуже кирпича и бетона. Кроме того, во многих легких изделиях, таких, как дирижабли или протезы конечностей, дерево превосходит даже армированный углеволокном пластик, не говоря уже о том, что оно значительно дешевле.

Таблица 8.
Конструктивная эффективность различных материалов,
выраженная в затратах энергии, необходимых для их производства *


 
Материал
Энергия, необходимая
для обеспечения
заданной жесткости
конструкции
в целом
Энергия, необходимая
для изготовления
сжатой панели
заданной
критической нагрузкой
Сталь
1
1
Титан
13
9
Алюминий 
4
2
Кирпич
0,4
0,1
Бетон
0,3
0,05
Дерево
0,02
0,002
Углеволокнистые композиты
17
17
* Все величины в таблице относительны, за единицу приняты характеристики стали. Все они очень приблизительны.
В табл. 8 приведены характеристики конструктивной эффективности материалов в терминах энергетических затрат. Видно, что обычные материалы - дерево, кирпич и бетон - имеют здесь подавляющее преимущество, и таблица заставляет задуматься, действительно ли оправданна погоня за материалами, в основе которых лежат экзотические волокна. Во многих случаях рентабельнее использовать не углеволокна, а пустоты. Природа поняла это очень давно, когда изобрела дерево; это понимали и римляне, которые облегчали кладку пустыми винными кувшинами. Пустоты несравненно дешевле как в стоимостном, так и в энергетическом отношении, чем любые мыслимые высокомодульные материалы. Возможно, лучше тратить больше времени и средств на разработку пористых и ячеистых материалов, чем на волокна бора или углерода.
 

Глава 14. Катастрофы, или очерк об ошибках, прегрешениях и усталости металла

Оглавление


Март 2001